Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces
نویسندگان
چکیده
منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملClassification of ξ-Ricci-semisymmetric (κ, μ)- manifolds
It is proved that for a non-Sasakian η-Einstein (κ, μ)-manifold M the following three conditions are equivalent: (a) M is flat and 3-dimensional, (b) M is Ricci-semisymmetric, and (c) M is ξ-Riccisemisymmetric. Then it is proved that an ξ-Ricci-semisymmetric (κ, μ)manifold M is either flat and 3-dimensional, or locally isometric to E × S(4), or an Einstein-Sasakian manifold. Mathematics Subject...
متن کاملpseudo ricci symmetric real hypersurfaces of a complex projective space
pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملNew Examples of Complete Ricci Solitons
The Ricci soliton condition reduces to a set of ODEs when one assumes that the metric is a doubly-warped product of a ray with a sphere and an Einstein manifold. If the Einstein manifold has positive Ricci curvature, we show there is a one-parameter family of solutions which give complete non-compact Ricci solitons.
متن کاملRigidity of minimal hypersurfaces of spheres with constant ricci curvature
ABSTRACT: Let M be a compact oriented minimal hypersurface of the unit n-dimensional sphere S. In this paper we will point out that if the Ricci curvature of M is constant, then, we have that either Ric ≡ 1 andM is isometric to an equator or, n is odd,Ric ≡ n−3 n−2 andM is isometric to S n−1 2 ( √ 2 2 )×S n−1 2 ( √ 2 2 ). Next, we will prove that there exists a positive number ̄(n) such that if ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2002
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm94-1-7